420 research outputs found

    Higher-order Continuum Approximation for Rarefied Gases

    Full text link
    The Hilbert-Chapman-Enskog expansion of the kinetic equations in mean flight times is believed to be asymptotic rather than convergent. It is therefore inadvisable to use lower order results to simplify the current approximation as is done in the traditional Chapman-Enskog procedure, since that is an iterative method. By avoiding such recycling of lower order results, one obtains macroscopic equations that are asymptotically equivalent to the ones found in the Chapman-Enskog approach. The new equations contain higher order terms that are discarded in the Chapman-Enskog method. These make a significant impact on the results for such problems as ultrasound propagation. In this paper, it is shown that these results turn out well with relatively little complication when the expansions are carried to second order in the mean free time, for the example of the relaxation or BGK model of kinetic theory.Comment: 20 pages, 2 figures, RevTeX 4 macro

    Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in Rhodopseudomonas palustris TIE-1

    Get PDF
    Sedimentary hopanes are pentacyclic triterpenoids that serve as biomarker proxies for bacteria and certain bacterial metabolisms, such as oxygenic photosynthesis and aerobic methanotrophy. Their parent molecules, the bacteriohopanepolyols (BHPs), have been hypothesized to be the bacterial equivalent of sterols. However, the actual function of BHPs in bacterial cells is poorly understood. Here, we report the physiological study of a mutant in Rhodopseudomonas palustris TIE-1 that is unable to produce any hopanoids. The deletion of the gene encoding the squalene-hopene cyclase protein (Shc), which cyclizes squalene to the basic hopene structure, resulted in a strain that no longer produced any polycyclic triterpenoids. This strain was able to grow chemoheterotrophically, photoheterotrophically, and photoautotrophically, demonstrating that hopanoids are not required for growth under normal conditions. A severe growth defect, as well as significant morphological damage, was observed when cells were grown under acidic and alkaline conditions. Although minimal changes in shc transcript expression were observed under certain conditions of pH shock, the total amount of hopanoid production was unaffected; however, the abundance of methylated hopanoids significantly increased. This suggests that hopanoids may play an indirect role in pH homeostasis, with certain hopanoid derivatives being of particular importance

    Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography–mass spectrometry

    Get PDF
    Hopanoids are triterpenoids produced mainly by bacteria, are ubiquitous in the environment, and have many important applications as biological markers. A wide variety of related hopanoid structures exists, many of which are polyfunctionalized. These modifications render the hopanoids too involatile for conventional gas chromatography (GC) separation, so require either laborious oxidative cleavage of the functional groups or specialized high temperature (HT) columns. Here we describe the systematic evaluation and optimization of a HT–GC method for the analysis of polyfunctionalized hopanoids and their methylated homologs. Total lipid extracts are derivatized with acetic anhydride and no further treatment or workup is required. We show that acid or base hydrolysis to remove di- and triacylglycerides leads to degradation of several BHP structures. DB-XLB type columns can elute hopanoids up to bacteriohopanetetrol at 350 °C, with baseline separation of all 2-methyl/desmethyl homologs. DB-5HT type columns can additionally elute bacteriohopaneaminotriol and bacteriohopaneaminotetrol, but do not fully separate 2-methyl/desmethyl homologs. The method gave 2- to 7-fold higher recovery of hopanoids than oxidative cleavage and can provide accurate quantification of all analytes including 2-methyl hopanoids. By comparing data from mass spectra with those from a flame ionization detector, we show that the mass spectromet (MS) response factors for different hopanoids using either total ion counts or m/z 191 vary substantially. Similarly, 2-methyl ratios estimated from selected-ion data are lower than those from FID by 10–30% for most hopanoids, but higher by ca. 10% for bacteriohopanetetrol. Mass spectra for a broad suite of hopanoids, including 2-methyl homologs, from Rhodopseudomonas palustris are presented, together with the tentative assignment of several new hopanoid degradation products

    Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche

    Get PDF
    Molecular fossils of 2-methylhopanoids are prominent biomarkers in modern and ancient sediments that have been used as proxies for cyanobacteria and their main metabolism, oxygenic photosynthesis. However, substantial culture and genomic-based evidence now indicates that organisms other than cyanobacteria can make 2-methylhopanoids. Because few data directly address which organisms produce 2-methylhopanoids in the environment, we used metagenomic and clone library methods to determine the environmental diversity of hpnP, the gene encoding the C-2 hopanoid methylase. Here we show that hpnP copies from alphaproteobacteria and as yet uncultured organisms are found in diverse modern environments, including some modern habitats representative of those preserved in the rock record. In contrast, cyanobacterial hpnP genes are rarer and tend to be localized to specific habitats. To move beyond understanding the taxonomic distribution of environmental 2-methylhopanoid producers, we asked whether hpnP presence might track with particular variables. We found hpnP to be significantly correlated with organisms, metabolisms and environments known to support plant–microbe interactions (P-value<10^−6); in addition, we observed diverse hpnP types in closely packed microbial communities from other environments, including stromatolites, hot springs and hypersaline microbial mats. The common features of these niches indicate that 2-methylhopanoids are enriched in sessile microbial communities inhabiting environments low in oxygen and fixed nitrogen with high osmolarity. Our results support the earlier conclusion that 2-methylhopanoids are not reliable biomarkers for cyanobacteria or any other taxonomic group, and raise the new hypothesis that, instead, they are indicators of a specific environmental niche

    T-cell intracellular antigens in health and disease

    Get PDF
    T-cell intracellular antigen 1 (TIA1) and TIA1-related/like protein (TIAR/TIAL1) are 2 proteins discovered in 1991 as components of cytotoxic T lymphocyte granules. They act in the nucleus as regulators of transcription and pre-mRNA splicing. In the cytoplasm, TIA1 and TIAR regulate and/or modulate the location, stability and/or translation of mRNAs. As knowledge of the different genes regulated by these proteins and the cellular/biological programs in which they are involved increases, it is evident that these antigens are key players in human physiology and pathology. This review will discuss the latest developments in the field, with physiopathological relevance, that point to novel roles for these regulators in the molecular and cell biology of higher eukaryotes.Ministry Economic Affairs and Competitiveness through FEDER funds (BFU2008–00354, BFU2011–29653 and BFU2014–57735-R). The CBMSO receives an institutional grant from Fundación Ramón Areces.Peer Reviewe

    Causal Relativistic Fluid Dynamics

    Full text link
    We derive causal relativistic fluid dynamical equations from the relaxation model of kinetic theory as in a procedure previously applied in the case of non-relativistic rarefied gases. By treating space and time on an equal footing and avoiding the iterative steps of the conventional Chapman-Enskog --- CE---method, we are able to derive causal equations in the first order of the expansion in terms of the mean flight time of the particles. This is in contrast to what is found using the CE approach. We illustrate the general results with the example of a gas of identical ultrarelativistic particles such as photons under the assumptions of homogeneity and isotropy. When we couple the fluid dynamical equations to Einstein's equation we find, in addition to the geometry-driven expanding solution of the FRW model, a second, matter-driven nonequilibrium solution to the equations. In only the second solution, entropy is produced at a significant rate.Comment: 23 pages (CQG, in press

    A Continuum Description of Rarefied Gas Dynamics (I)--- Derivation From Kinetic Theory

    Full text link
    We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulae at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process-dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.Comment: 16 page

    Розвиток духовності особистості в процесі фахової підготовки майбутніх учителів образотворчого мистецтва

    Get PDF
    (uk) У статті наголошується, що вчитель образотворчого мистецтва виступає носієм не лише спеціальних знань та умінь, але і носієм духовних цінностей. Духовне збагачення і вдосконалення кожної особистості відбувається протягом всього життя в тому числі і в процесі навчання. Гуманізація освіти та естетичне виховання спрямовано на формування гармонійної цілісної особистості, загальнокультурний її розвиток. Засобами естетичного виховання в мистецтві виступає художній образ. Художній образ є відображенням дійсності яке містить в собі не лише суб’єктивний досвід автора, його розуміння та відношення до об’єктів дійсності, але і відбитки культурно-історичного досвіду, естетичних цінностей, але і відбитки культурно-історичного досвіду, естетичних цінностей соціуму загалом. На їх базі і формується всебічно та гармонійно розвинута особистість із вищими моральними цінностями, естетичними канонами та ідеалами.(ru) В статье делается акцент на то, что учитель изобразительного искусства выступает носителем не только специальных знаний и умений, но и носителем духовных ценностей. Духовное обогащение и совершенствование каждой личности происходит на протяжении всей жизни в том числе и в процессе обучения. Гуманизация образования и эстетическое воспитание направлены на формирование гармоничной целостной личности и ее общекультурное развитие. Средством эстетического воспитания в искусстве выступает художественный образ. Художественный образ является отражением действительности, которое содержит в себе не только субъективный опыт автора, его понимание и отношение к объектам действительности, но и отпечатки культурно-исторического опыта, эстетических ценностей социума в целом. На их базе и формируется всесторонне и гармонично развитая личность с высокими моральными ценностями, эстетическими канонами и идеалами.(en) Importance of education in society is determined by the need to raise the national consciousness of the saved and nurturing genuine citizen. Spiritual enrichment and improvement of each individual occurs throughout life including during training. Spirituality determines the direction of all mental, emotional, sensual, strong-willed human qualities and its ability to self yourself as a person. Master of Fine Arts acting carrier not only specialized knowledge and skills, but also a bearer of spiritual values. Humanizing education and aesthetic education aims at forming a harmonious whole person, her general cultural development. Art is an integral part of spiritual culture, a reflection of the artistic representations of the human form of the world of reality. The means of aesthetic education in the art of acting artistic image. Artistic image is a reflection of reality, which contains not only the subjective experience of the author, and understanding related to the objects of reality, but the prints are of cultural and historical experience, the aesthetic values of society as a whole. At their base is formed fully and harmoniously developed personality with higher moral values, aesthetic canons and ideals

    Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes

    Get PDF
    The rise of atmospheric oxygen has driven environmental change and biological evolution throughout much of Earth’s history and was enabled by the evolution of oxygenic photosynthesis in the cyanobacteria. Dating this metabolic innovation using inorganic proxies from sedimentary rocks has been difficult and one important approach has been to study the distributions of fossil lipids, such as steranes and 2-methylhopanes, as biomarkers for this process. 2-methylhopanes arise from degradation of 2-methylbacteriohopanepolyols (2-MeBHPs), lipids thought to be synthesized primarily by cyanobacteria. The discovery that 2-MeBHPs are produced by an anoxygenic phototroph, however, challenged both their taxonomic link with cyanobacteria and their functional link with oxygenic photosynthesis. Here, we identify a radical SAM methylase encoded by the hpnP gene that is required for methylation at the C-2 position in hopanoids. This gene is found in several, but not all, cyanobacteria and also in α -proteobacteria and acidobacteria. Thus, one cannot extrapolate from the presence of 2-methylhopanes alone, in modern environments or ancient sedimentary rocks, to a particular taxonomic group or metabolism. To understand the origin of this gene, we reconstructed the evolutionary history of HpnP. HpnP proteins from cyanobacteria, Methylobacterium species, and other α-proteobacteria form distinct phylogenetic clusters, but the branching order of these clades could not be confidently resolved. Hence,it is unclear whether HpnP, and 2-methylhopanoids, originated first in the cyanobacteria. In summary, existing evidence does not support the use of 2-methylhopanes as biomarkers for oxygenic photosynthesis
    corecore